Closing Thu: Sup 6-7
Closing Tue: Sup 8-9
Read Sup 8-9 and my four page summary review of Sup 1-9.

Supp. 9: AC, AVC, and AR
New terms:
$\boldsymbol{A C}(\boldsymbol{q})=\frac{\boldsymbol{T C}(\boldsymbol{q})}{\boldsymbol{q}}$
Entry Task:
Get out the paperweights graph.
By drawing appropriate lines and
computing slopes estimate:

1. $\mathrm{MC}(200)$
2. $\mathrm{AC}(300)$
3. $\mathrm{AVC}(700)$
= average cost to make q items
$=$ slope of the diag. line to TC at q
$\operatorname{AVC}(q)=\frac{V C(q)}{q}$
= ave. variable cost to make q items
$=$ slope of the diag. line to VC at q
$\boldsymbol{A R}(\boldsymbol{q})=\frac{\boldsymbol{T R}(\boldsymbol{q})}{\boldsymbol{q}}$
= average revenue in selling q items
$=$ slope of the diag. line to TR at q

Paperweights cost analysis

Notes about AC, AVC, and AR:

1. They give overall rate info, but all are diagonal lines!
2. $A C(q)$ includes $F C$ in the average (because TC(q) includes FC).
3. $A V C(q)$ does not include FC.
4. $A R(q)$ is the same as price per item.

q	100	200	300	400	500	600	700	800	900	1000
$M C$	1.88		0.08	0.08	0.68	1.88	3.68	6.08	9.08	12.68
$A C$	7.73	4.48		2.33	1.93	1.81	1.94	2.30	2.88	3.68
$A V C$	2.73	1.98	1.43	1.08	0.93	0.98		1.68	2.33	3.18

Key Concept Review/Observations

Go back to the TC, VC graphs

1. Compute:
A) Breakeven price (BEP)
B) Shutdown price (SDP)

Now look at the AC, AVC, MC graph.
Any observations?

Again, go back to the TC, VC graphs
2. Assume the market price for
is 2.50 dollars/paperweight.
Before you do anything else, is a positive profit possible?
A) Draw TR. What is your profit for:
i) $q=50$?
ii) $q=400$?
B) What quantity maximizes profit?
C) What is the maximum profit?
D) What would the MR graph look
like? Draw it with the MC, AC, AVC graphs.

Any observations?

